Sur quelques généralisation des nombres pseudopremiers
نویسندگان
چکیده
منابع مشابه
Une généralisation automorphe des nombres de Stirling
Let [n] be theset {1,2, *.. , n> and CT a given permutation in S,, the symmetric group on [n]. The (unsigned) Stirling numbers of the first kind enumerate the permutations on En] with k cycles and those of the second kind give the number partitions of [n] having k blocks. In this paper we compute the number of permutations on [n] with k cycles and the number of partitions on [n] having k blocks...
متن کاملSur une Généralisation des Coefficients Binomiaux
We prove a recent conjecture of Lassalle about positivity and integrality of coefficients in some polynomial expansions. We also give a combinatorial interpretation of those numbers. Finally, we show that this question is closely related to the fundamental problem of calculating the linearization coefficients for binomial coefficients.
متن کاملSur Les Chiffres Des Nombres Premiers Décalés
The aim of this work is to prove new results on a class of Counting digits functions that we define in this work: the digital functions with special emphasis on shifted primes as arguments. Our method lies on the estimate of exponential sums of the form ∑ n≤x Λ(n) exp(2iπf(n+cn)+βn) where f a digital function, c = (cn) is an almost-periodic sequence in Z and β is a real parameter, which extend ...
متن کاملSur Quelques Limitations des Algorithmes Dans Le Traitement des Suites
— A relation (I.F.) is given which partially expresses the conditions to be satisfied by a séquence transformation in order to be "calculable". We can apply this relation on gênerai space and without using recursive notions. This relation gives us sharp négative results concerning séquence transformations. This is shownfor decidability problems of periodicity,for extraction problems of converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1962
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-9-1-109-113